Exam Symmetry in Physics

Date April 6, 2020
Time 8:30-11:30
Lecturer
D. Boer

- Write your name and student number on every separate sheet of paper
- All subquestions (a, b, etc) of the three exercises have equal weight
- Illegible answers will be not be graded
- Good luck!

Exercise 1

Consider a regular five-sided pyramid with a regular pentagon as base (see figure) and its symmetry group $C_{5 v}$.

(a) Identify all transformations that leave this regular five-sided pyramid invariant.
(b) Show that $C_{5 v}$ is isomorphic to D_{5}, for instance using cycle notation.
(c) Argue, using geometrical arguments, that $C_{5 v}$ has four conjugacy classes.
(d) Determine the dimensions of all inequivalent irreps of $C_{5 v}$.
(e) Construct explicitly the three-dimensional vector representation D^{V} for the two transformations that generate $C_{5 v}$ and extract a two-dimensional irrep from it.
(f) Construct the character table of $C_{5 v}$. The irrep obtained in (e) may be used and it may be convenient to use $x \equiv \cos (2 \pi / 5)=-\frac{1}{4}(1-\sqrt{5})$ and $y \equiv \cos (4 \pi / 5)=$ $-\frac{1}{4}(1+\sqrt{5})$, that satisfy $x^{2}+y^{2}=\frac{3}{4}$ and $x y=-\frac{1}{4}$.
(g) Decompose D^{V} of $C_{5 v}$ into irreps and use this to conclude whether this group allows in principle for an invariant three-dimensional vector, such as an electric dipole moment.

Exercise 2

Consider a circular electric current loop and the magnetic field it generates, as displayed in the figure:

(a) Identify all symmetry transformations that leave this system invariant and call the group that they form $G_{\text {loop }}$.
(b) Explain why $G_{\text {loop }}$ cannot be isomorphic to the group $O(2)$ of orthogonal 2×2 matrices.
(c) Explain why $G_{\text {loop }}$ cannot be isomorphic to the group $U(1)$ of unitary 1×1 matrices.
(d) Give a nontrivial one-dimensional complex irreducible representation of the group $S O(2)$ of orthogonal 2×2 matrices with determinant equal to 1 , and argue whether that is also an irreducible representation of $G_{\text {loop }}$.

Exercise 3

Consider the group $S O(3)$ of orthogonal 3×3 matrices with determinant equal to 1 . Consider its action on the angular momentum states $|l, m\rangle$ through the operator

$$
O(\theta, \hat{n})=\exp \left(\frac{i}{\hbar} \theta \hat{n} \cdot \vec{L}\right)
$$

(a) Write down the explicit matrix for L_{z} acting on the space of $|1, m\rangle$ states.
(b) Write down the explicit matrix for $O(\theta, \hat{n})$ acting on the space of $|1, m\rangle$ states for the specific case $\hat{n}=\hat{z}$. Call this matrix $D^{(l=1)}(\theta)$ and determine the range of θ.
(c) Use the character of this $l=1$ representation $D^{(l=1)}$ to show that it is equivalent to the vector representation D^{V} of $S O(3)$.
(d) Show that $D^{(l=1)} \notin S O(3)$ and explain why it can nevertheless be a representation of $S O(3)$.

